
Super-radiance near conducting and plasma surfaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1976 J. Phys. A: Math. Gen. 9 799

(http://iopscience.iop.org/0305-4470/9/5/014)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 02/06/2010 at 05:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/9/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Snper-radiance near conducting and plasma surfaces 

M Babiker 
Physics Department, University of Khartoum, Khartoum, Sudan 

Received 18 November 1975, in final form 26 January 1976 

Abstract. In free space, the presence of an atom in its ground state near an excited atom 
undergoing an electric dipole transition, leads to a modification of the transition rate. Thi is 
shown to be modified further if the system of two atoms is located near a macroscopic 
surface. For small inter-atomic separations, R << A,,, (X, is the reduced electric dipole 
wavelength) and for distances z, z << A0/2 of the system from a perfectly conducting surface, 
the transition rate for the symmetric state, when both atomic dipoles are oriented perpen- 
dicular to the surface, is four times the rate for an isolated single atom. The antisymmetric 
state is stable. For a configuration in which dipoles are oriented parallel to the surface, both 
the symmetric and the antisymmetric states are stable. When the behaviour of the same 
system is investigated near the surface of a semi-infinite electron plasma, serving as a model 
for a metal, it is found that, in addition to the behaviour in the perfect conductor case, 
contributions from surface plasmon modes, and other contributions accounting for the 
finiteness of the plasma frequency are also exhibited. 

It is well known (see for instance Power 1967), that in a region of space free of 
boundaries, an excited atom undergoing an electric dipole transition, can decay at twice 
the normal rate, when a second atom in its ground state is also present in its 
neighbourhood. The decay rate, in general, depends on the relative orientation of the 
dipole moments of, and is a function of the distance between, the two atoms. This effect 
W a s  first pointed out by Dicke (1954). A single atom near a conducting surface is also 

to exhibit such an effect. In this case it can be explained as being due to a 
@operative emission of a correlated state of the atom and its image in the conducting 

(Milonni and Knight 1973). 
If in addition to the presence of the conducting surface, another atom in its ground 

Stateis also present within a short distance from the original atom, the decay rate will be 
even further, depending on the relative orientation of the atomic dipoles. The 

Pme motivation of this paper is the investigation of this problem. 
In a region of space far removed from the conducting surface, the two-atom system 

exhibits radiation effects of the type discussed by Dicke (1954). Close to the conducting 
it is found that the transition rate is particularly enhanced when both the atomic 

‘pole moments are oriented perpendicular to the surface. Very close to the conducting 
the symmetric state decays at four times the decay rate of a single isolated atom. 

‘e Presence of the conductor effectively multiplies the already enhanced decay rate by 
‘0 th  factor of two. 

Problems involVh3 the 
effw of macroscopic bodies on atomic properties. In the recent literawe, the model 

I99 

perfectly conducting surface is most widely discussed 
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wasemployed by Barton (1970,1974); Babiker and Barton (1972); monni 
(1973); and Philpott (1973). The simplicity of such a model when employed in actual 
calculations, stems from the simple boundary conditions imposed by M~~~~~~ equa- 
tions at the surface of a perfect conductor, which is taken as impermeable to elec- 
tromagnetic fields at all frequencies, however high. In practice, however, field penetra- 
tion across the boundaries of material media is a physical reality, and for most 
cases the perfect conductor model is not adequate. 

A model that illustrates the effects of field penetration is the metallic electron 
plasma, which has also been discussed in the recent literature (Elson and KtcKe 1971). 
Although the boundary conditions, and consequently the mode expansion of he 
electromagnetic fields, are quite involved here, the model permits the investigation of 

surface effects of a novel type. In addition to the usual photon modes, there exist oher 
modes, called the surface plasmons, which can have important physical effects on 
atomic properties near a metallic surface. Another characteristic of the plasmamdelis 
that, in the limit of high plasma frequencies, the results €or the perfect conductor case 
emerge. Quantum mechanical treatments using this model have already been reported, 
For a single atom, the frequency shifts have been discussed by Babiker and Barton 
(1976) for electric dipole transitions, and by Babiker (1975) for hyperfine structure 
transitions, while decay rates have been discussed by Philpott (1 975). 

In this paper, we shall be concerned with the emission effects mentioned earlier, for 
a system of two atoms in the vicinity of a metallic surface. We elaborate first on the 
perfect conductor case and briefly outline how the procedure and results are modified 
for the case of the plasma model. 

The decay rate of the system can, in principle, be calculated for a general atomic 
dipole orientation, but, for illustration purposes, we shall confine our attention to a few 
special configurations for w ~ c h  the calculations are relatively manageable and the 
results easy to interpret. The configurations discussed here are so chosen that the d e w  
rates into all mode channels are taken into account. For the case of the plasma, we shall 
confine ourselves to only one of the configurations discussed in the perfect Conductor 
case. 

In 8 2 we define the quantized transverse vector potential in the presence of an 
infinite conducting surface and explain how this leads to the expression ofthe decay rate 
of a single excited atom situated at a fixed distance from the surface. The results are 
needed for meaningful comparison with the results for the two-atom system discussed 
in the later sections. In 0 3 we consider the two-atom system in front of a PeIfed 
conductor and give fairly detailed accounts for some special cases for which the d?'e 
orientations are simple. In 0 4 we consider the plasma surface in Place of the 
surface and illustrate how the calculations for one of the configurations proceed' 
Section 5 contains a summary and some comments. 

2. Single atom near conductor 

2.1. Quantized radiation field 

We shall assume that the plane z = 0 defines the surface of the metal, Which is 'aken 
Occupy the half space, z < 0. Atomic systems will be on the vacuum side, *'Or at 

. the distances which always exceed the average atomic size. 
For a perfectly conducting metal, the vector potential may be quantized ' 

Coulomb gauge, div A = 0. An appropriate mode expansion, satisfying the boundary 
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m&ions at z = 0, is given by (Barton 1974) 

iq k 
X( f- sin 4z - i- cos qz)]  e'""+ (Hermitean conjugate), 

0 0 

801 

where 02= k2+q2, P is the coordinate parallel to the surface, unit vectors are 
designated by carets and the a,@, 4)  and up@, 4)  are the usual annihilation operators 
for he  s photons and the p photons, respectively, 

2.2. Transition rate for a single atom 

Consider a single neutral atom in the electric dipole approximation, with its nucleus 
fixed at a distance z from the conducting surface. We shall use the Hamiltonian of 
Power and Zienau (1 959) and write 

H = Ho + Hi"t, (2.3) 

where Ho denotes the Hamiltonian for the radiation field and the unperturbed atom, 
while Hint is given by 

Hint-= - d .  E = d .  A(x). (2.4) 

In equation (2.4) x is the coordinate of the nucleus, d is the electric dipole moment 
operator of the atom and we use natural units h = c = 1. 

The transition rate of an excited state (i) to a lower state If) is, to lowest order, given 
bY 

fie total decay rate is therefore given by the sum of the separate decay rates into the s 
ad P photon channels 

Y ' Y s f Y p  

We shall consider the cases when the atomic dipole moment is oriented either pardlel 
or PerPendicular to the surface. When d is perpendicular to the surface, the contribu- 

to 'Y' comes only from the p photons 
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where W O  = Ei - EI, 

(2.10) 
is the transition rate for the isolated atom. In equation (2.9) Jo and Jz are 
functions of the zeroth and second order, respectively. 

decay rate from both the s and the p photons and we have 
When the dipole is oriented parallel to the surface, there are contributions to the 

(2.11) 
+I= y!+ yp II 

In this case one finds the expressions 

Hence 
#(z) = yo(l +$G(2002)). 

where 

(2.12) 

(2.13) 

(2.14) 

Equations (2.8) and (2.14) give the modified decay rates due to the presence of the 
conducting surface. The second terms in these expressions are image corrections which 
are particularly important when the atom is close to the surface. For small distances 2, 

satisfying 2uOz << 1, we have 
F(2002) =?j; G(2~oz)  2: -3. (2.161 

The inequality 2w02 << 1 is equivalent to the statement that the distance of the atom 
from the surface is less than hal€ the reduced dipole wavelength ( z  << &0/2). Under these 
conditions 

yL=23/o; yll= 0. (2.17) 

These results show that, close to the surface, the excited state of an atom whose 
dipole is oriented perpendicular to the surface decays at twice the rate of an isolated 
atom (super-radiance). When the dipole is oriented parallel to the surface, the excited 
state is stable (sub-radiance). 

3. Two-atom system near conductor 

Consider a system of two identical atoms, labelled 1 and 2, of which one is excited and 
the other is in its ground state, with their nuclei positioned at fixed distances from *e 
perfectly conducting surface described in 5 2. In this case we write 

(3.1) H = Ho + Hi,,, 
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H~ now designates the Hamiltonian of the unperturbed two-atom system plus 
the radiation field, while Hi,, is given in the electric dipole approximation by 

Hi,,= c di . A(x,). (3.2) 
i=1,2 

quantized vector potential A is still given by equation (2.1) and x1 and x2 are the 
mrbates of the nuclei. 

~ t h  atoms essentially see the same amplitude of the radiation field, and therefore 
dipole selection rules apply to the decay of the combined system. The initial state is 
ejtber the symmetric (+) state or the antisymmetric (-) state 

for which the final state is always 

M O )  = /f)llf)2. (3.4) 

We calculate the decay rates r"' for both types of states defined by equation (3.3). 
ne golden rule gives 

Inthe mast general case, r"' are functions of the atomic positions as well as the relative 
orientation of the atomic dipole moment vectors. In what follows, we shall specialize in 
amesimple configurations and discuss the decay rates for each of these configurations. 

3.1. Configuration ( a )  

Here the atoms are situated at equal distances zl = z = z2, from the surface, with their 
@des both pointing in the i direction. We choose axes as shown in figure 1, with the 
atoms fixed at the space points (0, 0, z )  and (R, 0,z) .  

Atom 2 Atdm I 

1. Configuration (a).  
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Using equations (3.2), (2.2), and (2.1) we obtain from equation (3.5) 

since the atoms are identical, we can put dl = d = d2, and define the functions s(*)(RR): 

where Jo is the Bessel function of the zeroth order. Equation (3.6) then becomes 

We introduce new variables 

o = (k2+q2)1’2, 

CL = d o ,  (3.9) 

for which the Jacobian is U (  1 - pZ)-I/’, and the limits of the integration are as shown 
below. Equation (3.8) becomes 

p ) = 4 d 2 j O m d , b  d p 3 ( l - p 2 )  cos zp,uS“’(o, p, R)S(oo-o). 

The w integration immediately gives 

1 

(3.101 

1 

r‘*’=4d2w: dp(1 -p2 )  cos 2pozS(* ) (wo,  p, R ) ,  (3.15) 

where 

S(*)(WO, p, R )  = 1 fJo(wo(1 -pZ)l/’R). (3.11) 

The full expressions given by equation (3.10) define the decay rates of the (+) and 
(-1 states for any z and R. These complicated expressions, however, simplify in Some 
specid but interesting limits. We define the ‘small-R’ limit by the inequality ooR << 1 for 
which the inter-atomic distance is less than the reduced dipole wavelength, &. SdalY 
we define the ‘small-z’ limit by the inequality 2woz << 1. In the latter limit, z is Sa 
required to exceed the average atomic size. We also note that these limits are 
interchangeable and mutually compatible, so that they can both be applied sirnuitme- 
OUsly. In the limit ‘small R’ and ‘small z’ the atoms are separated from each other and 
from the surface by distances less than the reduced wavelength Xo and half thereduced 
wavelength &/2 respectively. The symbols =, = and + will be used to designate 
equalities under the limits ‘small R’, ‘small z7 and ‘small R and small z’, respedvely.. 

Prior to applying the above mentioned limits to the decay rates given by eqmhon 
d (3.10), we first note that this expression can be separated into z-independent an 

z-dependent parts. We write 
r‘*)=r‘:)(~)+r~)(~,~), (3.12) 
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(3.13) 

(3.14) 

f) are completely independent of the presence of the conducting surface and are 
bctions of R only. Accordingly we identify p’ as the decay rates for the isolated 
meatom system. In the ‘small-R’ limit we have 

J0(oO(l-p2)”’R)= 1 +O(w;R’). (3.15) 

Hence equation (3.13) gives 

(3.16) 
Jo 

So, for the symmetric (+) state 

p= 270, (3.17) 

while for the antisymmetric (-) state 

C-) = 0 + O( w;R 2 ) .  (3.18) 

These are the Dicke results for an isolated system of two atoms. 
The z-dependent parts, E), are defined by equation (3.14). In interpreting these 

results, it is best to impose the ‘small-R’ limit first and reduce the expression for a 
general z. Thus 

1 

rb‘.’=$yo J dp(1-p’) cos 2 C L o o ~ [ i * ( i + ~ ( w ~ ~ 2 ) ) ~ .  
0 

IXS gives for the (+) state 

p:)= 6yoF(2woz),  

for the (-) state, 

E-) = 0 + O( o:R *). 

rp = 2 yo. 

M e r ,  we impose the ‘small-z’ limit, we obtain 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

itfOllowsfromequations (3.17), (3.18), (3.21) and (3.22) that for ‘small R andsmall Z’ 
we have 

r(+)=4yo, 

F-) = 0 + O(&R *). 

(3.23) 

(3.24) 

The above results show that, close to the surface ( z  << X0/2) the Symmetric state of a 
SMemofan excited atom and another atom in its ground state, separated by a distance 

i o ,  will radiate at four times the decay rate of a Completely isolated system of 
Oneatom- The antisymmetric state of the system is stable. 
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Finally we note that for ‘small z)  and a general R, equations (3.13) and ( 3 . ~ ~ )  
combine to give 

JO 
(3.25) 

from which we infer that, close to the surface, the isolated decay rates of the system 
effe&vely multiplied by a factor of two. For large R and large z the decay rates reduce 
to the decay rates for single isolated atoms, as they should. This can be deduced directly 
from equations (.3.13) and (3.14) under these conditions. 

3.2. Configuration (b)  
The second configuration is schematically shown in figure 2, in which the atom 
situated on the z axis with their dipoles still pointing in the 2 direction. In this case one 
obtains for the decay rates 

At 1 i n 2  

v v v v v v v v v v v v v v v v v v v  

Figmre 2. Configuration (b). 

Define R and 2 by 

R = 22  - 21, 

z= (21 -t- z2)/2. (3.27) 

Elementary trigonometry will then reduce equation (3.26) to the following form: 

which becomes, on transforming to the variables o and p ,  defined by equation (3a9)’ 
and performing the o integration : 

1 (3.29) 
l-‘(*’=&o I dcL(1- p2)(1 *cos 2p.aoZ*cos v o R  +COS w o R  cos 2woa. 

0 
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w w e  note that the decay rates separate into z-independent and z-dependent parts 
(3.30) 

t) anespond to the expressions for the isolated two-atom system and e) are the 
mnspndhg corrections due to the presence of the surface. In this case, we obtain for 
f)&e exact result 

r‘” = e)( R) + ?$)( z, R). 

; e’ = $70 Jo dp(  1 - p *)( 1 * cos ~ o O R )  = yo( 1 * ~F(WOR )I. (3.31) 

hhe ‘small-R’ limit, the Dicke results are obtained, 

p= 2 yo, I--) = 0 + O( oiR 2). (3.32) 

ne z-dependent parts, e’ are given by 
. I  

r(bl)=zyo dp(1 -p2 )  cos 2pJ(cos kuOR * 1). (3.33) 

In the ‘small-R’ limit we obtain 
1 

I??) 2 $ y 0  lo dp(1- p2) cos 2 p 0 Z [  * 1 + (1 + O(uER2))J, (3.34) 

which yields for the (-) state 

rb-) = o+ O ( ~ : R ~ ) ,  (3.35) 

&e for the (+) state, we get 

rb+)=6y0F(2w0Z). (3.36) 

&further, we impose the ‘small-2’ limit to the above results we obtain 

r“’=4yo, p-)= O+O(U;R2). (3.37) 

’be behaviour mentioned in the previous case is again concluded. 

3.3. Configuration ( c )  

!ere the two atoms are positioned on the z axis at (0, 0, z d  and (O,O, 2 2 )  with their 
*F& pointing in the P direction. This is schematically shown in figure 3. 

In contrast to the previous two cases, where the decay is only into the P-Photon 
h n e l ,  in the present configuration both the s-photon and the p-photon channels are 

p*) = r:) +e). (3.38) 

involved, 

&method of calculation is essentially the same as described before. We find 
1 

(3.39) p= i 
4Yo [ dp[ 1 - cos w o R  cos 2poZ* (cos p o R  -cos 2 p 0 2 ) 1 ,  
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v v v v v v v v v v v v v v v v v v v  

F i e  3. Configuration (c). 

Accordingly, the total decay rates are given by 

l?*) =$yo { dp(  1 + p2)[  1 - cos pooR cos 2 p 0 Z  f (cos p o R  -cos 2p400Z)] 

which separates into z-independent and z-dependent parts: 

1 

0 

r“’ = r‘B’(R) + p(2, R). 
The z-independent parts are 

1 

r‘a’(R>=?yo { dp( l+pZ)( l  +cos poOR)= y o ~ $ y o G ( o o R ) ,  
0 

which reduce to the familiar results 

e’ = 2 yo, I-$) = 0 + O( o;R 2 ) ,  

in the ‘small-R’ limit. 
The z-dependent parts are given by 

from which we obtain in the ‘small-R’ limit 

E’ = 3y0G(2w0z); I$’ = 0 + O(o;R ’). 
finally we impose the ‘small-2 limit. We get from equation (3.46) 

rr) = . -2 yo; l+;’=o+o(o:R2). 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

The total decay rates in the ‘small-R and small-2 limit are obtained by adding 

(3.48) 

We conclude that, under the above conditions, and when the atomic dipies are 
oriented parallel to the surface, both the (+) and the (-) states are stable. hantrastfo 

contributions from equations (3.44) and (3.47). The result can be written as 
r(*)=o+o(o:R2)+O(w:Z2). 
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the behaviour encountered in configurations (a )  and (b ) ,  where the presence of the 
s d a g  leads to super-radiance of the (+) states and sub-radiance of the (-) states, the 
plesence of the surface leads to sub-radiance of both types of states in configuration ( c ) .  
Forageneral orientation the behaviour of the system near the surface is obviously more 
complicated, but for both types of states an intermediate behaviour between sub- 

and super-radiance is to be expected. 

4.  toms near a plasma surface 

n e  decay rate for a single atom near the surface of an electron plasma occupying the 
half space z<O, has been considered by Philpott (1975). His treatment, however, 
excludes the photon modes transmitted into the plasma and is applicable only for 
frequency regions for which the effective dielectric function of the plasma is negative. 
ne transverse vector potential on the vacuum side z > 0, has recently been extended 
pabiker and Barton 1976) to include the photon modes whose wavenumber q ranges 
from the plasma frequency, up, to infinity. The vector potential, defined for z > 0, is 
written as the sum of three separate parts 

A = A, +Ap +Asp, (4.1) 

where the subscripts s and p refer to the two types of photon modes and sp refers to the 
surface plasmon modes. The s-photon part can be written as 

where HC is the Hermitean conjugate and 

Inkabove expression e is the step function and the variables v and a are defined by 

y 2 = - f 1 2 = 0 2 -  2 

o p = v  +q = q  -0.  
P 47 

(4.4) 
2 2 2 2 2  

For the p-polarized photons one has 

.-m ,W 

aere 

(4.3 
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e ( 9 - 0 )  

(4.6) 

In equations (4.3) and (4.6) the functions preceded by O b p -  41, Correspond to the 
vector potential used in previous calculations (PhiIpOtt 1975). The additional terms, 
preceded by 8(9 -ap), represent the photon modes transmitted into the plasma. 

with E = 1 - o; /w2.  

The surface plasmon part is 
00 

Asp= I-, d2k (L)1 ’2 [ak ( i~+2~)  *Pk eik*P-‘or+Hc], (4.7) 

where 

(4.8) 
2 -  2 qo - k 

@k is the surface plasmon eigenfrequency corresponding to a surface plasmon with 
wavenumber k. The well known expression 

k 2 = u t € k / ( l  + E k ) ,  (4.10) 
relates k to wk. The annihilation operators asA(k, 9), up*@, 4 )  and al, obey the 
commutation rules 

[4~(k 4)s a:,hW, 9’)I = S ~ A A , S ( ~ -  k’)S(q-q’),  
[ak, a:,J= S(k-k’) .  (4.11) 

We shall treat the two-atom transition problem in front of the plasma surface only 
for configuration (a), which is shown in figure 1. The calculations for any other 
configuration can be conducted along similar lines. 

The decay rates for the two-atom system in configuration (a) are given by 

P * ’ = ~ T C  I(+*; OIW+~C~,; Q>I’s(~,-u~Q)) (4.12) 
0 

where the sum over the quanta, designated by & is carried over all types of quanta. 
can be the quantum for an s photon, a p  photon or a surface plasmon. o( (2) is the energ 
of the quantum. 

The decay rates are given by the sum of rates into the three orthogonal channels: 

r“’ = e’+ ly + r$). (4.13) 

For the present configuration we have 

E*’= 0. (4.14) 
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,,kned that the two contributions can be combined, by means of a simple mathemati- 
&trick, so that the range of the 4 integration then extends from zero to infinity. The 

the contributions from the p photons with wavenumbers 
expressions can then be dealt with by the methods of the previous sections. 

we denote by and 
to and q >up, respectively. Thus using equation (4.6) we obtain for l$2, 

4 P  

S'*'(kR) 
k2  

F- - d2 2.rrz (2T)2[k d k r d q [  o(l +E2q2/V ) 

(4.15) €242  x ( s i n 2 q z + T c o s 2 q z + 4 s i n 2 q z  V V 

&re S'*'(kR) is given by equation (3.7). Elementary trigonometry yields from 
equation (4.15) 

(4.16) 

The transmitted photon part, for which 4 >up, similarly gives the contribution 

cos 2qz)l. (4.17) $ = 2 d 2 L  k d k k  d q [ w S ' " ( k R ) S ( o o - w ) ( l + ~  * k2 q - R  m 

Equations (4.16) and (4.17) separate into z-independent and z-dependent parts. 
'Ibus we can write 

l-y = l-$; +e?. 
"he z-independent parts are given by 

I$'=2d2 k d k S d L d q ~ S ' * ' ( k R ) S ( o o - o ) ,  (4.18) 

when expressed in terms of the variables o and p yields 

1 
rb:'=2d20:6 dp(1-p 2 )S (*' (wo,P,R).  (4.19) 

% is identical to equation (3.13). We have thus identified the decay rates for the 
'ked two-atom system. 

''he 2-dependent parts of equations (4.16) and (4.17) combine to give e? as 
follopIs: 

(4.20) 

%e Re denotes the 'real part'. When expressed in terms of the variables 0 and P, 
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equation (4.20) becomes 

r$)(R, z) = 2d2 dwRe [ dp[ e2iw%3(l - p  2 ) S  (*) (p, U, R )  

(4.21) 

which finally yields 

%)= 2d2wiRe 
1 

d p  eziwopr(l -fi2)S‘*)(p, wo, R )  

The first term of equation (4.22) immediately gives the perfect conductor result of 
equation (3.14). The second part is a correction to the decay rates due to the finiteness 
of the plasma frequency. 

Finally we consider the surface plasmon contributions. These are given by 
02 

E;)= 2T I, d2kl($*; OIHintIlClO; k)12a(oO-wk). (4.23) 

Using equations (4.7) we obtain from the above expression 

(4.24) 

The O k  variables can be converted to k variables in the Dirac delta function by meansof 
the relation 

(4.25) 

The final result is (putting eo = e(o0)), 

These define the decay rates into the surface plasmon channel. In the ‘small-R’ limkwe 
obtain 

These results show that the decay rate of the symmetric (+) state into the surface 
plasmon channel for the two-atom system satisfying w o ~  << 1 is twice the decay rate into 
the same channel for a single atom (Philpott 1975). The decay rate into this d m n e l  Of 
the antisymmetric (-1 State is negligible under these conditions. 

4. Comments and conclusions 

Specialking in some dipole orientations, we have obtained full expressions for the 
decay rates of the two-atom system in the presence of metallic surfaces. The latter are 
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as either conducting, and therefore impermeable to electromagnetic fields; or 
,pproltimately represented by an electron plasma model which illustrates the effects of 
field penetration across the metallic surface. 

our results indicate that the transition rates are markedly modified close to the 
surface. An excited atom in the vicinity of a conducting surface can have a 

lifebe four times shorter than the normal lifetime, when a similar atom in its ground 
is placed close to it near the surface. There are other important contributions due 

to he surface plasmons, which are also enhanced in the presence of the resonating 
atom. The surface plasmon contributions are exponential functions of the distance from 
&e surface and are consequently significant only close to the surface. 

The so called monolayer assembly technique developed recently by Kuhn and 
co-workers (Kuhn et aZ 1972) provides the possibility of experimentally detecting the 
physical effects on atomic properties of the type mentioned in this paper, when systems 
of atoms are held close to material surfaces. Experiments along these have already been 
reported (see, for instance, Drexhage 1970, 1969). 

Another aspect of the effects on the two-atom system is a modification of the 
resonance energy transfer between the two atoms, due to the presence of the surface. 
This has been briefly commented on by Philpott (1975). A full calculation, for both the 
ws of a perfect conductor and the plasma, may be conducted along the lines of 
Mclone and Power (1964) using the appropriate quantized vector potentials. 
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